01E Diffusion Flux

Equivalence with water flowing through the pipe

•Think of the number of molecules of water flowing through a pipe per unit cross section of the pipe.

This is the flux, call it J in units of N m^{-2} s⁻¹.

The cross section of the pipe is A in $\ensuremath{\mathtt{m}}^2$

Therefore the total number of molecules flow through the pipe are JA N $\rm s^{-1}$

Volume of each molecule is Ω in units of ${\tt m}^{\scriptscriptstyle 3}$

Therefore, the volumetric mass flowing through the pipe is $\phi = JA\Omega$ m³s⁻¹.

The driving force is the pressure gradient i.e. $\frac{dp}{dx}$

From elementary fluid mechanics,

$$J\Omega = \frac{1}{\eta} \frac{d(p\Omega^{2/3})}{dx}$$

The relationship between the viscosity, $\eta\,,$ and the coefficient of diffusion of water molecules is given by the Stokes Einstein Equation

$$\eta = \frac{k_B T}{6\pi \Omega^{1/3} D}$$

$$\Delta \mu = p\Omega$$

Therefore, generally,

$$j\Omega = \frac{1}{\eta} \frac{d(p\Omega^{2/3})}{dx}$$
$$j = \frac{1}{\Omega} \frac{6\pi\Omega^{1/3}D}{k_BT} \frac{d(p\Omega^{2/3})}{dx} = 6\pi \frac{D}{\Omega k_BT} \frac{d(p\Omega)}{dx}$$

J= (diffusion coefficient terms)*(driving force)
General diffusion equation for solid state diffusion is given by

$$j = \frac{D}{\Omega k_B T} \frac{d\Delta \mu}{dx}$$
(1)

D: $m^2 s^{-1}$ Omega: m^3 Т: К

 k_{B} : J $K^{-1}atom^{-1}$

 $\Delta \mu$: J*

x: m

Upon insertion of these units into Eq. (1) we have the following for the Right Hand Side:

$$\frac{m^2}{s} \frac{1}{m^3 J K^{-1} a tom^{-1} K} \frac{J}{m} = \frac{m^2}{s} \frac{1}{m^3 J K^{-1} a tom^{-1} K} \frac{J}{m} = a toms m^{-2} s^{-1}$$

The physical meaning of flux is number of atoms $m^{-2} {\rm s}^{-1}$

Remember that atoms can be replaced by molecules

*(Note: $\Delta\mu$ is the chemical potential of the species, which was shown to be equal to $\sigma\Omega$, which has units of energy, i.e. J)