0601D: Diffusion

09/17/21: Practice HW on the topic of Diffusion

1.

Write a short paragraph describing the phenomenon and the dimensions of the diffusion coefficient.

2.

The following equation gives a relationship between the effective diffusion distance and the coefficient of diffusion:

$$6Dt = L^2 \tag{1}$$

for the cast of diffusion in three dimensions (as opposed to two dimensions as in a grain boundary).

The diffusion coefficient of ${\rm H}_2{\rm O}$ in water is given by the equation

$$\eta = \frac{k_B T}{6\pi\Omega^{1/3} D_{H_2O}} \tag{2}$$

where, "eeta" is the viscosity (equal to 10^{-3} Pa s), k_{B} is the Boltzmann's constant (1.38* 10^{-23} J atom⁻¹ K⁻¹, and "Omega" is the volume per H₂O molecule in water.

A drop of a dye molecule of about the same size at that of $\rm H_2O$ (and, therefore, about the same diffusivity) is dropped into the middle of a container of water.

Calculate the time it would take for the dye to spread to a distance of 1 $\ensuremath{\text{cm}}\xspace.$

3.

Lattice or Volume diffusion in zirconia (ZrO_2) is controlled by the diffusivity of